| Question | Answer | Acceptable answers | Mark | |----------|-------------------|--------------------|------| | Number | | | | | 1(a)(i) | CuCl ₂ | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 1(a)(ii) | An explanation linking the following points Either • the amount of product calculated (1) | | | | | using the equation (for the reaction) (1) Or the maximum amount of {product / copper chloride} (1) when all {reactant / copper} | using reacting masses amount of product when all {reactant / copper} reacts (2) | | | | reacts (1) | | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 1(b)(i) | $2Fe(s) + 3Br_2(g) \rightarrow 2FeBr_3(s)$ | | | | | reactant formulae (1) balancing correct formulae (1) state symbols (1) s and g must be lower case | allow state symbol mark even if other marks not awarded | (3) | | Question | Answer | Acceptable answers | Mark | |------------------|-------------------|------------------------------------|------| | Number | | | | | 1 (b)(ii) | 56 + (3 x 80) (1) | give full marks for correct answer | | | | = 296 | with no working | (1) | | | | - | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|-----------------------------|---|------| | 1 (b)(iii) | ratio: 56/310 (1) | | | | | % iron 56/310 x 100 (%) (1) | any number/310 x 100 (%) | | | | (= 18 (%)) | 18.06/18.1
give full marks for correct answer
with no working | (2) | | Question | Answer | Acceptable answers | Mark | |------------------|--------|------------------------------|------| | Number | | | | | 1 (b)(iv) | НО | $OH_{1}O_{1}H_{1}H_{1}O_{1}$ | | | | | · | (1) | | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------| | 2(a) | An answer that combines the following points of understanding to provide a logical description: (hydrogen produced as a gas so) there would be {effervescence/fizzing/bubbles} (1) and (calcium hydroxide produced as a solid so) the water would go {cloudy/a white precipitate would form} (1) | Allow: calcium moves (around) (1) calcium decreases in size/disappears/dissolves (1) | (2) | | Question
number | Answer | Mark | |--------------------|-----------------------------------|------| | 2(b) | $Mg + H_2O \rightarrow MgO + H_2$ | | | | • LHS (1) | | | | • RHS (1) | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------| | 2(c) | An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (1 mark): In calcium the outermost electron(s) { are further away from nucleus /experience(s) greater shielding} (from the nucleus) (as shown by the electronic configuration) (1) Therefore less attraction between nucleus and electron(s)/ the electron(s) is/are easier to remove (1) | Allow answers in terms of why reactivity of magnesium is less than that of calcium | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | 2(d) | divides mass by relative atomic mass (1) calculates simplest ratio (1) expresses ratio correctly as empirical formula (1) | $\begin{array}{c cccc} \underline{\text{Example of calculation}} \\ \hline \text{Ca} & : & \text{Br} \\ \hline 0.2 & : & 0.8 \\ \hline 40 & : & 80 \\ \hline 0.005 & : & 0.01 \\ 1 & : & 2 \\ \hline \text{empirical formula CaBr}_2 \\ \hline \\ \hline \text{Formula alone scores} \\ \hline \text{max 1} \\ \hline \end{array}$ | (3) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | 3(a)(i) | particles are same size when they should be different sizes (1) model is in 2D but crystal is 3D (1) | Allow reverse statements giving correct information. | (2) | | Question number | Answer | Mark | |------------------|---|------| | 3 (a)(ii) | An explanation that combines identification – knowledge (1 mark) and reasoning/justification – understanding (2 marks): very strong bonds/ionically bonded (1) between 2+ cations and 2– anions (1) so requires lot of energy to separate magnesium and oxide ions to melt the solid (1) | (3) | | Question number | Answer | Additional guidance | Mark | |-----------------|--|------------------------|------| | 3(b)(i) | $CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O$
+ CO_2
• all formulae on correct side (2)
• balancing (1) | Allow 3/4 formulae (1) | (3) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------| | 3(b)(ii) | relative formula mass copper carbonate $= 63.5 + 12.0 + (3 \times 16.0)$ $= 123.5$ relative formula mass copper oxide $= 63.5 + 16.0$ $= 79.5 (1)$ mass copper oxide $= \frac{15.0 \times 79.5}{123.5} = 9.7 \text{ g to 2 s.f. (1)}$ Answer must be to two significant | Award full marks for correct numerical answer without working. | | | | figures | | | | | OR | | | | | moles of copper carbonate $= \frac{15.0}{123.5} = 0.12145(1)$ mass of copper oxide $= \text{moles CuCO}_3 \times 79.5$ $= 9.7 \text{ g to 2sf (1)}$ Answer must be to two significant | | | | | figures | | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---|------| | 3 (c) | 2.4/24 moles Mg = 0.1 mol (1) | Award full marks for correct numerical answer without | | | | and 0.2 moles H ₂ O has mass | working. | | | | $0.2 \times \text{formula mass H}_2\text{O} = 3.6 \text{ g}$ (1) | | | | | total mass reactants = 2.4 + 3.6 = 6.0 g is the same as total mass products = 5.8 + 0.2 = 6.0 g (1) | | | | | 0.0g (1) | | (3) | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|----------------|--------------------|------| | 4(a)(i) | A displacement | | (1) | | Question | Answers | Acceptable Answers | Mark | |----------|---------|---|------| | Number | | | | | 4(a)(ii) | orange | Any colour or combination of colours from brown, red, orange and yellow Ignore shade of colours | (1) | | | | Reject other colours combined with | | | | | these e.g. yellow-green | | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|---------|--------------------|------| | 4(b) | С | | (1) | | | | | | | Question | Answer | Acceptable answers | Mark | |----------|---------------------------------------|----------------------|------| | Number | | | | | 4(c) | $(H_2 + Br_2 \rightarrow) 2HBr$ | Ignore state symbols | (2) | | | • correct formula for HBr (1) | Allow BrH (1) | | | | balancing of correct formulae (1) | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---------------------------------|---|------| | 4(d) | [24 + 2x35.5] (1) (= 95) | 95 with no working | (1) | | | | [24 + 2x35.5] with no answer or an incorrect answer scores (1) | | | Question
Number | Answers | Acceptable Answers | Mark | |--------------------|---|--|------| | 4(e) | • relative formula mass = [23 + 19] (1) (= 42) | (19/42) x 100 (2) (= 45.2 (%))
(19/[19+23]) x 100 (2) (= 45.2
(%)) | (2) | | | • [(19/their relative formula mass) x100] (1) (=45.2(%)) consequential on their | 45/45.2 (%) with no working (2) Ignore additional significant figures | | | | relative formula mass | Allow 42 seen in working (1) Allow (19/23) x 100 = {82.6% / 83%} (1) | | | Question number | Answer | Mark | |-----------------|--------|------| | 5 (a) | С | (1) | | Question number | Answer | Additional guidance | Mark | |-----------------|--|---------------------|------| | 5 (b) | molecular formula – C₅H₁₀ (1) structure (1) | | | | | H H—C—H | | | | | H | | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---|------| | 5 (c)(i) | calculates relative molecular mass of C₄H₉OH (1) calculates mass of C₄H₉OH produced (1) final answer = 1.9 (kg) (1) | Example of calculation Relative molecular mass of $C_4H_9OH = (4 \times 12) + (9 \times 1) + 16 + 1 = 74$ Mass of C_4H_9OH produced = $(74 \div 56) \times 1.4$ Accept 1.85 (kg) Award full marks for use of moles/correct numerical answer without working | (3) | | Question number | Answer | Mark | |------------------|--------|------| | 5 (c)(ii) | A | (1) | | Question number | Answer | Mark | |-----------------|---|------| | 5 (d) | X and Y are both unsaturated/contain {multiple/double} bonds/alkenes (1) Z is saturated/contains no {multiple/double} bonds/alkane (1) | (2) |