Question	Answer	Acceptable answers	Mark
Number			
1(a)(i)	CuCl ₂		(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	An explanation linking the following points Either • the amount of product calculated (1)		
	 using the equation (for the reaction) (1) Or the maximum amount of {product / copper chloride} (1) when all {reactant / copper} 	using reacting masses amount of product when all {reactant / copper} reacts (2)	
	reacts (1)		(2)

Question Number	Answer	Acceptable answers	Mark
1(b)(i)	$2Fe(s) + 3Br_2(g) \rightarrow 2FeBr_3(s)$		
	reactant formulae (1) balancing correct formulae (1) state symbols (1) s and g must be lower case	allow state symbol mark even if other marks not awarded	(3)

Question	Answer	Acceptable answers	Mark
Number			
1 (b)(ii)	56 + (3 x 80) (1)	give full marks for correct answer	
	= 296	with no working	(1)
		-	

Question Number	Answer	Acceptable answers	Mark
1 (b)(iii)	ratio: 56/310 (1)		
	% iron 56/310 x 100 (%) (1)	any number/310 x 100 (%)	
	(= 18 (%))	18.06/18.1 give full marks for correct answer with no working	(2)

Question	Answer	Acceptable answers	Mark
Number			
1 (b)(iv)	НО	$OH_{1}O_{1}H_{1}H_{1}O_{1}$	
		·	(1)

Question number	Answer	Additional guidance	Mark
2(a)	 An answer that combines the following points of understanding to provide a logical description: (hydrogen produced as a gas so) there would be {effervescence/fizzing/bubbles} (1) and (calcium hydroxide produced as a solid so) the water would go {cloudy/a white precipitate would form} (1) 	Allow: calcium moves (around) (1) calcium decreases in size/disappears/dissolves (1)	(2)

Question number	Answer	Mark
2(b)	$Mg + H_2O \rightarrow MgO + H_2$	
	• LHS (1)	
	• RHS (1)	(2)

Question number	Answer	Additional guidance	Mark
2(c)	An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (1 mark): In calcium the outermost electron(s) { are further away from nucleus /experience(s) greater shielding} (from the nucleus) (as shown by the electronic configuration) (1) Therefore less attraction between nucleus and electron(s)/ the electron(s) is/are easier to remove (1)	Allow answers in terms of why reactivity of magnesium is less than that of calcium	(2)

Question number	Answer	Additional guidance	Mark
2(d)	 divides mass by relative atomic mass (1) calculates simplest ratio (1) expresses ratio correctly as empirical formula (1) 	$\begin{array}{c cccc} \underline{\text{Example of calculation}} \\ \hline \text{Ca} & : & \text{Br} \\ \hline 0.2 & : & 0.8 \\ \hline 40 & : & 80 \\ \hline 0.005 & : & 0.01 \\ 1 & : & 2 \\ \hline \text{empirical formula CaBr}_2 \\ \hline \\ \hline \text{Formula alone scores} \\ \hline \text{max 1} \\ \hline \end{array}$	(3)

Question number	Answer	Additional guidance	Mark
3(a)(i)	 particles are same size when they should be different sizes (1) model is in 2D but crystal is 3D (1) 	Allow reverse statements giving correct information.	(2)

Question number	Answer	Mark
3 (a)(ii)	 An explanation that combines identification – knowledge (1 mark) and reasoning/justification – understanding (2 marks): very strong bonds/ionically bonded (1) between 2+ cations and 2– anions (1) so requires lot of energy to separate magnesium and oxide ions to melt the solid (1) 	(3)

Question number	Answer	Additional guidance	Mark
3(b)(i)	$CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O$ + CO_2 • all formulae on correct side (2) • balancing (1)	Allow 3/4 formulae (1)	(3)

Question number	Answer	Additional guidance	Mark
3(b)(ii)	relative formula mass copper carbonate $= 63.5 + 12.0 + (3 \times 16.0)$ $= 123.5$ relative formula mass copper oxide $= 63.5 + 16.0$ $= 79.5 (1)$ mass copper oxide $= \frac{15.0 \times 79.5}{123.5} = 9.7 \text{ g to 2 s.f. (1)}$ Answer must be to two significant	Award full marks for correct numerical answer without working.	
	figures		
	OR		
	moles of copper carbonate $= \frac{15.0}{123.5} = 0.12145(1)$ mass of copper oxide $= \text{moles CuCO}_3 \times 79.5$ $= 9.7 \text{ g to 2sf (1)}$ Answer must be to two significant		
	figures		(2)

Question number	Answer	Additional guidance	Mark
3 (c)	2.4/24 moles Mg = 0.1 mol (1)	Award full marks for correct numerical answer without	
	and 0.2 moles H ₂ O has mass	working.	
	$0.2 \times \text{formula mass H}_2\text{O} = 3.6 \text{ g}$ (1)		
	total mass reactants = 2.4 + 3.6 = 6.0 g is the same as total mass products = 5.8 + 0.2 = 6.0 g (1)		
	0.0g (1)		(3)

Question Number	Answers	Acceptable Answers	Mark
4(a)(i)	A displacement		(1)

Question	Answers	Acceptable Answers	Mark
Number			
4(a)(ii)	orange	Any colour or combination of colours from brown, red, orange and yellow Ignore shade of colours	(1)
		Reject other colours combined with	
		these e.g. yellow-green	

Question Number	Answers	Acceptable Answers	Mark
4(b)	С		(1)

Question	Answer	Acceptable answers	Mark
Number			
4(c)	$(H_2 + Br_2 \rightarrow) 2HBr$	Ignore state symbols	(2)
	• correct formula for HBr (1)	Allow BrH (1)	
	balancing of correct formulae (1)		

Question Number	Answer	Acceptable answers	Mark
4(d)	[24 + 2x35.5] (1) (= 95)	95 with no working	(1)
		[24 + 2x35.5] with no answer or an incorrect answer scores (1)	

Question Number	Answers	Acceptable Answers	Mark
4(e)	• relative formula mass = [23 + 19] (1) (= 42)	(19/42) x 100 (2) (= 45.2 (%)) (19/[19+23]) x 100 (2) (= 45.2 (%))	(2)
	• [(19/their relative formula mass) x100] (1) (=45.2(%)) consequential on their	45/45.2 (%) with no working (2) Ignore additional significant figures	
	relative formula mass	Allow 42 seen in working (1) Allow (19/23) x 100 = {82.6% / 83%} (1)	

Question number	Answer	Mark
5 (a)	С	(1)

Question number	Answer	Additional guidance	Mark
5 (b)	 molecular formula – C₅H₁₀ (1) structure (1) 		
	H H—C—H		
	H		(2)

Question number	Answer	Additional guidance	Mark
5 (c)(i)	 calculates relative molecular mass of C₄H₉OH (1) calculates mass of C₄H₉OH produced (1) final answer = 1.9 (kg) (1) 	Example of calculation Relative molecular mass of $C_4H_9OH = (4 \times 12) + (9 \times 1) + 16 + 1 = 74$ Mass of C_4H_9OH produced = $(74 \div 56) \times 1.4$ Accept 1.85 (kg) Award full marks for use of moles/correct numerical answer without working	(3)

Question number	Answer	Mark
5 (c)(ii)	A	(1)

Question number	Answer	Mark
5 (d)	 X and Y are both unsaturated/contain {multiple/double} bonds/alkenes (1) Z is saturated/contains no {multiple/double} bonds/alkane (1) 	(2)